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NONSTATIONARY BURNING OF PROPELLANTS WITH VARIABLE SURFACE
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B. V. Novozhilov

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 8, No. 1, pp. 54—-63, 1967

The author examines nonstationary processes (combustion at varying
pressure, quenching, and ignition) for a model propellant whose burn-
ing rate u and surface temperature Ty depend on pressure p and initial
temperature Ty, All the processes in the surface reaction zone and the
gas phase are assumed inertialess, It is shown that a theory of nonsta-
tionary combustion for such a model can be constructed by analogy with
the Zel'dovich theory [1, 2], in which the surface temperature of the
powder is assumed fixed. The variation of burning rate with time has
been investigated for small sudden pressure changes. It is shown how a
sufficiently large and steep pressure drop may cause quenching of the
propellant, The process of propeliant ignition is subjected to a qualita=-
tive analysis.

1, Stationary and nonstationary laws of combustion,
Under stationary conditions the burning rate and sur-
face temperature of a propellant powder depend on the
initial temperature and pressure

u = u® (To,p), I=7%Twp- (1.1,

Zeltdovich [1, 2] has proposed a method of inves-
tigating nonstationary combustion processes for the
case of constant surface temperature. Essentially,

u

Fig. 1

the method consists of transforming the stationary
dependence of burning rate u° (7,p) on initial tempera-
ture and pressure into the relation u(f, p), where f is
the temperature gradient at the surface of the propel-
lant, The relation obtained is also valid under non-
stationary conditions (for this reason the superscript
has been dropped from the burning rate), since the
gradient determines the temperature in the combustion
zone, on which the burning rate also depends., The
transition from u° (T'y,p) to u(f, p) is realized with the
help of the known relation between gradient, burning
rate, and initial temperature:

®f°=w (T° —Ty), (1.2)

which is valid under stationary conditions (. is the
thermal diffusivity of the propellant). Of course, this
approach to the study of nonstationary phenomena ne-
glects the inertia of all the processes except for heat
conduction in the condensed phase.

The author of [3], makingthe same assumption about
the leading role of the inertia of the heated layer of
the condensed phase, has shown that by means of (1.2)
the stationary relation between surface temperature,
initial temperature, and pressure can be reduced to
the relation Ty(f, p), which is also valid for variable
pressure.
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Fig. 2

Thus, even in the case of variable surface tempera-
ture the nonstationary phenomena associated with the
burning of powders can be investigated by means of
the nonstationary laws

u=ulf,p Ty=17:( p) (1.3)
obtained from the stationary laws of combustion (1.1}
by using relation (1.2).
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The stationary laws of combustion can be obtained either from the
theory of combustion with account for the specific physicochemical
processes that take place in the condensed and gas phases or from ex-
periments on the stationary burning of propellants at various pressures
and initial temperatures.

Zel'dovich has shown that in the case of constant surface tempera-
ture a stable stationary combustion regime can be realized only if

7 dlnu®y
k<A, k:(Tf—To)( 7T )y

(1.4)
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Since
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it is obvious that the propellant can burn only on those parts of the

u(f) curve on which the derivative du/df is negative. In particular, in
the case of an exponential relation between burning rate and initial
temperature u® ~ exp BT, (this relation follows from the Arrhenius law
for the rate of the chemical reaction in gas phase) the u(f) curve at
constant pressure has the form shown in Fig. 1 (curve a), The part of
the curve depicted by a dashed line corresponds to unstable combustion
regimes k > 1, i.e., to low initial temperatures, since k = B(T; — Ty).

The analysis of experimental data on the stationary burning of pro-
pellants often leads to a law u¥(Ty that is nonexponential, In this case,
of course, the form of the u(f) curve also changes. Thus, for example,
the interpolarion of u®(T,) in the form u° ~ (1 — BT )} used in [4]
gives a linear relation between burning rate and gradient (curve b).
it is also possible to visualize a u(f) relation opposite to case a. If the
burning rate is interpolated by means of the law u® ~ exp BT%, then
at small values of the initial temperature the rate will decrease with
increase in gradient, while at large values it will increase (curve c).
However, for any relation between burning rate and gradient, stable
regimes correspond to those parts of the u(f) curves on which du/df <
< 0 (these are depicted by a solid line).

The situation is different if the surface temperature of the propellent
itself changes with the initial temperature. In this case the criterion of
stability of the stationary combustion regime at constant pressure has
the form [3]

r>E—1R/ (k4 1), r= (071" 0Ty), , (L.5)
where k has it former significance, and r is the derivative of the surface
temperature with respect to the initial temperature measured in the
stationary regime.

Correct to experimental errors, the data for N powder, the only
system for which measurements have so far been made [5], satisfy
criterion (1.5). Figure 2 presents the curve r = (k — 1%/ (k + 1) and
the points corresponding to combustion regimes at various pressures
and initial temperatures. The crosses correspond to a pressure p = 20
atm, the circles to p = 1 atm. The figures 1-8 correspond to initial
temperatures of —200°C, —150°C, ~100°C, 0°C, 100° C and
140° C. As the initial temperature increases, so do the parameters
kand .

We now turn to the relation u(f). Asin the case of constant surface
temperature its nature will be determined by the specific stationary
laws u(T) and Ty(T,). However, stable stationary regimes correspond
to parts of the u(f) curve with both negative and positive values of the
derivative du/df. Indeed, asshown in[3], for variable surface tem-
perature we have

(aallnnuf )p = k+’:~—1 ’

i (9T1 . r .
T’ln—Tn alnf)p—k—f—r—1 ’

therefore, the sign of the derivatives du/df and dTy/df is determined
by the sign of k +r — 1. In Fig. 2 the dashed line represents the
straight line r= 1 — k, It is clear from the drawing that in stable
regimes, i.e., when condition (1.5) is satisfied, there may be cases
of both positive and negative derivatives of the burning rate and sur-
face temperature with respect to the gradient. Figure 3 shows u(f) and
Ty(f) at a pressure of p = 20 atm for N powder.

Variability of the surface temperature leads to a series of important
effects lacking in the constant-temperature model: the region of stable
combustion increases [3]; the powder has a natural frequency, so that
the dependence of the amplitude of the burning rate on the frequency
of the applied, harmonically varying pressure is of the resonance type;
finally, nonlinear undamped oscillations of the burning rate are possible
at constant pressure [6, 7]. It is natural to expect that the behavior of
the propellent at varying pressure, i.e., nonstationary combustion,
will also be different from the case of constant surface temperature

considered by Zel'dovich. Below we investigate certain effects associ-
ated with nonstationary combustion in the presence of a variable pro-
pellent surface temperature.

2, Small variations of pressure, We will consider
the dependence of burning rate on time as the pressure
varies from a certain initial value p° to an end value
p1 = p°(1 + h). The inertia of the condensed phase (x <
< 0), taken into account in the heat conduction equation

or _ #T _ oT
% Fr g

T(—o0)=T,, To)y="T,, 2.1)
means that the burning rate u(t) does not correspond

to its stationary value u°(p) at the instantaneous value
of the pressure p(t). For a complete formulation of the
problem, apart from (2.1), it is also necessary to as-
sign the nonstationary laws of combustion u(f, p) and
Ty(p) and the relation between pressure and time p(t).
We will start by going over to dimensionless variables:

- IT-7 _ ()
e*'Tlo_Toy E'—‘ % Z,
- [ e)r _ Ihi—T
et Y=y
__u _ P _/
U= u° (PO)’ n’— pov (P ]w . (22)

In these variables the problem is formulated as fol-
lows: To find the dependence of burning rate on time
for a given variation of pressure with time, when the
burning rate and surface temperature are related in
a certain way with gradient and pressure

v=v(p n), 4=9(@ n), 2.3)
and the temperature inside the propellent satisfies the
heat conduction equation

00 0% a0

= U 0(— o0) =0, 00y =10 (2.4)

Since the heat conduction equation is nonlinear, the
exact solution of the problem for arbitrary relations
(2.3) and n(1) encounters considerable mathematical
difficulties. Accordingly, we will first investigate the
case of small variations of pressure, i.e,, the linear
approximation,

We represent the temperature, the burning rate,
gradient, and pressure in the form

O=ci(l+8), ¢=1+9,

v=1+uv, =1+ ¢, n=1+n,, 2.5)
where

a6
%:ﬁl—i_a—&l =0

Linearizing the heat conduction equation, we obtain

31 _ 0%, , 90
S = T

81 (— o0) =0, 8,(0) =% 2.8)
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In accordance with [6], relations (2.3) are written
in the form

k §—w
v1=k+r_1(91+ k—f—r——]nl’
_ r 6+u
= @.7

Here, k and r are determined by means of (1.4) and
(1.5); v and p are parameters characterizing the pres-
sure dependence of the burning rate and surface tem-
perature:

v=(Fhply P TeeTr (3Tl @9
Finally,

6 =vr—pk. 2.9)

In order to solve the problem we used the Laplace
transformation

F(py= pS e P F(t)dr.
o

From (2.6) we have

PO1(p) =861 (p) -+ 6" (p)—v1(p),
B1(P) gm0 =0, 01(P)lz=o = B1(p),
where a prime denotes differentiation with respect to
¢, The solution of this equation with account for the
boundary conditions is
B1(p) = [0:1(p) +v1(P)/ Pl e ~v1(p)/ P,
=t VT -

Hence the Laplace-transformed correction to the gra-
dient

(2.10)

@ (p) = O, () + z [®, () + v, (D)/p]. (2.11)

Transforming (2.7), we obtain two more equations for
determining v (p), ¥1(p) and ¥1(p)

\ k \ §—
v1(b) = oy (P -l—,T_F,—v1 Mm{p;

(P = 9 (P — e m (). (2.12)
From the last three equations we find that
vi(p) = r;r,_v(—r—_?zﬁp)—zﬂl (P),
$1(p) = % M (p)
ou(p) = ZEEPOEDIIOIE=2ID y (). 2223)

When p « 1 these expressions correspond to a very
slow variation of pressure (quasi-stationary regime).
Confining ourselves to the first term of the expansion
in p, for the burning rate we have

v (p) = vy (p) + & (v — 1) puy (P)-

The primitive of the first term is simply the cor-
rection to the burning rate for variation of pressure

under stationary conditions vn4(7). The second term,
however, is proportional to the derivative of the pres-
sure with respect to time {ny at 7 = 0 is equal to zero).

P
s J
0 =7 7

Fig. 4
Thus, in the quasi-stationary regime we have

* vy (1) =y (v) + k(v —p) dny/dr,
¢, (1) = pn, (1) + 7 (0 — v)dn,/dr,

P (M= + W)+ & — p)k + r — Ddny/dr, (2.14)
i.e., for slow variation of pressure the burning rate,
the surface temperature, and the gradient differ from
their stationary values at the instantaneous value of
the pressure ny(7) by amounts proportional to the rate
of change of pressure, This result was obtained by
Zel'dovich in [2] for a model with constant surface
temperature. At r = u = 0 expression (2.14) for the
burning rate goes over into the relation obtained in
the above-mentioned study.

We will now consider the case of a sharp change in
pressure. Let the pressure change from 7y = 0 to 1y =
=h, at time 7= 0, and thereafter remain constant,

To some extent this is an abstract formulation of the problem.
Firstly, in reality it is not possible to bring about a sudden rise or fall
in pressure, and, secondly, in conmstructing the propellent model in-
vestigated we assume that the relaxation times of the processes talking
place in the gas phase and the surface zone are equal to zero. Actually,
they are nonzero. However, an examination of the nonstationary phe-
nomena using this simple relation between pressure and time makes it
possible to clarify a number of important points connected with the
variation of burning rate, surface temperature, and gradient and then
to pass to the investigation of an actual case of pressure variation at
a finite rate.

Small times correspond to large values of the Lap-
lace variable, Setting p > 1 and n4(p) = h, from (2.13)

we obtain
k(n -+ 9)
v 1
1(p) = [ tos v Vs ]h
_ hit3d
1‘}'1(P)— r _V;
:(p) =”+6[1+ "+’:1]h.
r rVp
Consequently,

vi(1) =& [14 2LED (L,
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"3'1 (T) =

Qo () =D g g o) (€4

r
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T

(2.15)

In Fig. 4a and b the straight lines o and h corre-
spond to relations (2.7) for 7y = 0 and 9y = h, respec-
tively. The initial state of the propellant is repre-
sented by the point O, the end state by the point B.
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Fig. 5

Stationary combustion regimes correspond to the
straight lines s, whose equations are

vy =

T+p/v’ R Y

These expressions were obtained from the laws of
stationary combustion vy = vny and ¢ = uny with ac-

count for relations (2.7). The coordinates of the point
B are

v, (B) = vk, O, (B)=uph, @ (B)=(-+v)k.

For a sharp change of pressure, as follows from
(2.15), the surface temperature remains constant, but
the burning rate gradient changes abruptly from zero
to

v(d)=2h,  u(d)=LE8,

Graphically, the change in the state of the propel-
lents at time 7= 0 is represented by the arrows OA,

From the point A the system begins to move on the
straight line AB in the direction of the end state, the
point B, Actually, the coefficients of V7T in (2.15) are
positive; it is clear from the graph thatk +r -~ 1> 0
(the slope of the straight lines o and h is positive) and
g +6 >0 (at a given gradient the surface temperature
decreases with increase in pressure). When the pres-
sure changes at a large, but finite rate, the change in
the state of the system at small 7 is depicted by the
dashed curve.

Physically it is easy to understand why when the pressure changes
sharply the surface temperature changes only slightly, and the burning
rate and gradient strongly. As a result of the thermal inertia of the
surface reaction zone the temperature profile cannot change signifi-
cantly when the pressure rises rapidly. However, a small increase in
the surface temperature of the propellant is enough to cause a sharp in-
crease in the gradient and hence the burning rate.

We note that in the constant surface temperature model the gradient
remains constant when the pressure suddenly increases, while the burn-

ing rate takes a value

v
n(d) =17 h

greater than its end value vy(B) = vh. There then begins a gradual de-
crease in burning rate to the value vy(B). In the case of variable surface
temperature at the first instant all the quantities (burning rate, temper-
ature, and gradient) take values smaller than at point B.

We will now consider how the stationary end regime
is approached. For this purpose we take expression
(2.13) for the burning rate and, using the rules of op-
erational calculus [9], we find the inverse transform
v4(7). Calculations lead to the following result:

”‘}(Lﬂ- = <T - %) [26‘7“'005 0T ~—
eV [T ( or — k-—i po )il L
+ %(k(ﬁ;{"}‘-) +V(1—2r+k)) %

X [Ze‘“ sinot + eV (koir_ I V=, 5—2;1 V?” +

+ 5-erle (— YT, 2.16)
a)=]/mo2-—-7s,2, Wy = V;E,
A= “_("i_”?}(k“_W_ . (2.17)

Here, wy; and A are the natural frequency and log-
arithmic decrement of the oscillations of the burning
rate introduced in [6]. The functions U(x,y) and V(x,y)

Fig. 6

are related with the error function of complex argu-
ment by the simple relations

U(z,y) + ¥V (z,y) =

where

W (2), z=1z+ iy,

W@-w?+vﬂﬂﬂ

The function W(z) has been tabulated in [10]. Asymp-
totically at 7> 1

nw g 2 N L}
vh + Var 2 |i( rv 2 €08 OT -

(2.18)

E—1 7 k(64 u) v(l—r k&)
+ 2r20w< r + 2 )

sin m'lf] .

To a large extent the nature of the relation vy(7) depends on the
value of A, If A is large, the oscillating term damps rapidly. Otherwise,
at small A the oscillations of the burning rate continue for a long time.
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In this case the variation of surface temperature and gradient is also
oscillatory in character.
Figure § presents typical relations between burning rate and time,
Curve a was constructed for a propellent with the following param-
eters:

F=15, r=05 V=% p= Y

In this case

W = Vﬁ—, (0=V—2-

These parameters correspond to N powder burning at a pressure of
20 atm with an initial temperature of 20° C. Curve b was constructed
for a propellant with parameters selected so that A was small as com-
pared with the frequency of the oscillations. In this case

A= 2,

k=2,r=0.4,‘\/=2/3 p:O,

0o = 25 V2, A = 0.625, o = 3.5.

In both cases the nonstationary burning rate is significantly higher
than its end value vy (9 = vh. Curve a has a single maximum. In the
case of oscillations, however, the value vh is passed repeatedly, and
the rate may even fall below its initial value.

3. Large variations of pressure. Quenching of the
propellant. For large changes in pressure the linear
approximation is no longer sufficient. In this case it
is necessary to solve the nonlinear heat conduction
equation (2.4) with allowance for the nonlinear rela-
tions between burning rate and surface temperature
and gradient and pressure (2.3). Of course, the quali-
tative nature of the variation of burning rate in time
will be the same as in the case of small pressure
changes examined above. In particular, it remains
true that the temperature changes only slightly, where-
as the burning rate and gradient change abruptly in the
initial moments,

Obviously, the asymptotic behavior of the burning
rate at large times will be characterized by a com-
ponent oscillating with frequency w. However, at large
amplitudes of the burning rate oscillations, undamped
and even growing nonlinear oscillations may occur.

This is connected with the fact that when the nonlinear properties
of the system are taken into account A begins to depend on the ampli-
tude of the oscillations [7]. The detailed behavior of the burning rate
for a given change of pressure can be obtained either by numerical
integration of the starting equations or by some approximate method,
for example, the method of integral relations used in conjuction with
the constant-temperature model in [4, 8, 11, 12].

Zeldovich has studied the problem of the quenching of a propellant
with rapid decrease in pressure. This effect is associated with the fact
that the temperature gradient at the surface of the propellant in the
stationary regime is the greater, the higher the pressure. On the other
hand, assuming u® ~ exp BT, there is a maximum on the f(u) curve at
any pressure (see Fig. 1, curve a). If after the pressure drops the gradi-
ent exceeds its maximum value at the end pressure, combustion is im-
possible and the powder is quenched.

Thus, the form of the u(f) curve is important in explaining quench-
ing in the constant-temperature model. In fact, quenching can be
explained only in the case of curve a. For the u(f) relations represented
by curves b and ¢ (Fig. 1) quenching is impossible.

We will now consider how to explain quenching when
the pressure falls quite rapidly and steeply in the case
of a propellant whose surface temperature is variable.
In our opinion, for a correct understanding of this phe-
nomenon it is necessary to know the behavior of the

u(f) and Ty(f) curves at sufficiently low u and Ty, Fig-
ure 3 was constructed using experimental data relating
to stationary combustion in the range of initial tem~
peratures —200° C =< T, =< +140° C, What results are

Fig. 7

to be expected with further decrease in the initial tem-
perature of the propellent? It may be that stationary
combustion becomes impossible at a certain tempera-
ture. In this case the u(f) and Ty(f) curves end at the
points (fj, ;) and (fj, Tyi). Another variant is also pos-
sible—stationary combustion exists down to an initial
temperature equal to absolute zero. Then the non-
stationary laws u(f) and Ty(f) can be obtained from

the stationary relations u’(Ty) and T4°(T,) only up to
certain values of the burning rate and surface tem-
perature, However, the nonstationary relations are
also meaningful below those values. Their determina-
tion in that region must be based on experiments with
nonstationary combustion (for example, in experiments
on propellant ignition). It is natural to expect that in
this case, too, combustion will take place ouly if the
surface temperature is higher than a certain value,
i.e., the curve ends at a certain point (fj, Tyj). This
point corresponds to the end point of the burning rate
curve (fi, uj).

Figures 6a and b show the burning rate and surface
temperature as a function of the gradient for two val-
ues of the pressure py < py (curves 1 and 2, respec-
tively). The curves s correspond to stationary com~
bustion regimes at the given propellant temperature
T, and various pressures. We will consider the quali-
tative behavior of the propellent as the pressure varies
from p, to py. The initial stage is represented by the
point A, the end state by point B. For a slow variation
of pressure the transient process is represented by
the curve s. In the case of a rapid change of pressure
the surface temperature changes only slightly (in the
limiting case of a sudden drop in pressure it does not
change at all), while the gradient and burning rate ex-
perience sharp changes. This is shown by the arrows
AC. There is almost no change in the temperature
profile inside the propellant as the pressure varies.

In Fig. 7 the solid curve A corresponds to the initial
temperature distribution, and the dashed curve C,
which differs slightly from A only close to the
surface of the propellant, represents the tempera-
ture profile immediately after the fall in pressure—the
surface temperature has changed slightly from Ty(A)
to Ty(C), but the gradient at the surface has changed
sharply. The new value of the gradient corresponds to
the stationary temperature profile Cy, which in turn
corresponds to a large initial temperature. If the pres-
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sure subsequently remains constant and equal fo py,
the state of the propellant will vary along curve 1 (see
Fig. 6) in the direction CB, The surface temperature
and burning rate will fall, In fact, for the temperature
profiles C and C; near the surface of the propellant
we have the relations

8T a7 87
Grle, =0 (u%). =%

02T 62T
<% 0x? )C <(M oz? >C|

and, consequently, from heat conduction equation (2,1)
T | 8t)¢ < 0.

If the drop in pressure was sufficiently sharp, then
on approaching the point B the temperature profile in
the propellant will be sharply different from the sta-
tionary profile (curves B and By in Fig. 7), which for
the same reasons leads to a further decrease in the
burning rate and surface temperature, i.e., to the
displacement of point B in the direction of the end point
of the curves i.

The subsequent progress of the nonstationary pro-
cess depends on the magnitude and steepness of the
pressure drop. For a small value of py/p; or a slow
variation of pressure on the segment Bi we get a tem~
perature profile for which the second derivative of the
temperature near the surface coincides with the sec-
ond derivative of the stationary profile. In this case
at point D the fall in temperature ceases, and an os~
cillatory approach to the stationary regime begins,
However, for large and sharp pressure drops the non-
stationary process may reach the point i, at which
combustion ceases—the propellant is quenched.

Thus, the basic reason for guenching of the propel-
lent in the variable-temperature model is the same as
in the Zel'dovich model—the sharp difference between
the temperature profiles in the initial and end states.
However, the detailed behavior of the burning rate
and temperature distribution and the quenching cri-
terion are significantly different. At constant surface
temperature quenching is determined by the point with
an infinite derivative on the u(f) curve; in the variable-
temperature model by the point i corresponding to the
end of the u(f) and Ty(f) curves. In the absence of
quenching, relaxation of the temperature profile fo the
stationary distribution is ®viscous"” in the first case
and oscillatory in the second.

We note that both models give qualitatively identical relations
between the minimum drop and rate of variation of pressure necessary
for quenching. With increase in the ratio p,/py the minimum rate of
fall of pressure sufficient for quenching decreases. Actually, the occur-
rence of quenching depends on the distance between the point C and
the point B, and this distance increases with increase in the magnitude
and rate of the pressure drop. Thus, the quenching curves, i.e., the
dependence of the ratio p, /p; sufficient for quenching on the rate of
fall of pressure dp/dt, will have qualitatively the same form as in the
constant-temperature model (the quenching curves for that case were
approximately calculated in [11]). In this connection, we note that
the experimental data (e.g., [13]) are qualitatively explained by both
models. To make a quantitative analysis of the quenching phenomenon

and compare the results with the experimental data it is necessary, of
course, to know the detailed form of the u(f, p) and Ty(f, p) relations.
Hence the important, in our opinion, experimental problem of deter-
mining the stationary relations u’(Ty, p) and T (T, p) over broader
intervals of variation of pressure and initial temperature than before.

4, Propellent ignition. As Zel'dovich has shown, at constant sur-
face temperature to ignite a propellant it is necessary to heat its surface
to a certain temperature and create a sufficient reserve of heat in the
condensed phase, so that the temperature gradient is less than that max-
imally possible at the given pressure and the state of the propellant is
described by a point lying on a segment of the u(f) curve corresponding
to stable combustion regimes. Different propellant ignition regimes
depending on the rate of heat supply, have been examined by Librovich
[8], who has shown that at a sufficiently intense rate of heat supply
ignition does not occur at all—gasification of the propellants is accom-
panied by the establishment of a stationary regime with a temperature
gradient at which a flame cannot exist above the surface.

We now turn to the case of variable surface temperature. Obviously,
ignition can occur after the surface temperature reaches the value Ty;.
Before heating begins, Ty = Tyand f = 0. As the prope.ant is heated,
both the surface temperature and the gradient begin to increase. By
the same method as employed in studying the quenching of a propellant
it is easy to show that if the surface temperature reaches the value Ty,
while at that instant the gradient f is greater than fj, then after ig-
nition the surface temperature must fall, i.e., the propellant must be
quenched. In fact, after ignition the nonstationary relation Ty(f) re-
quires a single-valued relation between surface temperature and gradient.
Therefore at the instant of ignition the temperature profile must change
so that the gradient decreases from f; to f;. However, in the presence
of the resulting temperature distribution the surface temperature will
decrease (the second derivative of the temperature is less than in the
stationary profile corresponding to the gradient f;). Thus, rapid heating
of the propellant may lead only to flashing,

To ignite the propellant it is necessary to heat it sufficiently slowly,
so that at the moment when the surface temperature reaches the value
Ty; the gradient at the surface is not greater than f;. Only then will
the surface temperature rise after ignition and the burning rate increase
with subsequent relaxation to the stationary regime (in this case oscilla-
tions about the stationary end regime are possible).

The author thanks O. I. Leipunskii, A. G. Istratov, V. B. Librovich,
and A. D. Margolin for their comments and advice.
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